Course Specifications : Engineering Chemistry

University : Benha university Faculty : Faculty of Engineering Department industrial engineering department

1- Course Data

Course Code : EMP105 Specialization : Teaching Hours:	Course Title : Engineering Chemistry	Study Year : preparatory
Lecture : 2	Tutorial : 0	Practical : 2

2- Over all aim of Course

For students undertaking this course, the aims are to:

2.1-To acquire the student with the essential knowledge to understand the basic principles, laws and theories of physical chemistry which are necessary for engineering students.

2.2- To understand Theory of Equations and to solve problems on liquids, Thermo chemistry and electrochemistry equations

2.3-To study the properties and structure of matter and their relation to interaction of matter with energy

2.4-To recognize the basic tools necessary to obtain Water treatments and Building materials.

2.5-To describe the concept phase diagrams of the chemical compounds and it is mixture.

2.6-To understand some aspects on chemical industries.

2.7-To provide the students with the necessary practical skills concerning the quantitative and qualitative chemical analysis

3- Intended Learning Outcomes of Course (ILOS) a- Knowledge and Understanding

By the end of this course the students :

a ₁ - Recognize concepts and theories of chemistry and sciences, appropriate to the discipline.

a₂ - Recognize methodologies of solving engineering problems and data collection interpretation.

a ₃-Know that ,a good understanding of chemistry is essential in all engineering activities.

b- Intellectual Skills

By the end of this course, the students will be able to:

 $b_1\mbox{-}$ learn to apply mathematics in chemistry in such a way that the equations paint a clear picture of the physical phenomena being studied $\ .$

 b_2 - Select appropriate solutions for engineering problems based on analytical thinking.

b₃₋knowing the physical behavior of solid , liquid ,gas and mixed phase

 b_4 -knowing where energy goes or comes from and if process actually occurs or not

c- Professional and practical Skills

On completing this course, the students are expected to be able to:

 $C_{\mbox{\scriptsize 1-}}$ Determine the concentration of different species in solution

 $C_{2\text{-}}\mbox{Identify}$ the unknown samples and use the Lab equipments carefully

 $C_{\mbox{\scriptsize 3}}\mbox{-}$ Apply safe systems at work and observe the appropriate steps to manage risk

d- General and practical Skills

by the end of this course, the students will be able to:

d₁-Manage the time effectively

 $d_{\rm 2}$ - use different resources to get the required knowledge and information.

d₃-Collaborat effectively within multidisciplinary team.

 d_4 -Develop the ethical behaviors between students and staff members as well as among the students themselves. d_{5-} write a scientific report .

4- Course Contents

No.	Topics	No of hours		Practical
1	Introduction to the properties of materials	2	\checkmark	
2	Solutions	4	$$	
3	Change in type and chemical balance	2	$$	
4	Kinematics of Chemical reactions	4	$$	
5	Electrical Chemistry	4		
6	Corrosion	2		
7	Introduction to chemical thermodynamics	2	\checkmark	
8	Material and heat balance in combustion process	2		
9	Fuel technology	2		
10	Industrial chemistry: Cement- Fertilizer– plastic	2	\checkmark	
11	Water Pollution and Water treatment- Air pollution	-	-	
12	Determination of concentration of base using titration methods	4		
13	Analyzing salts to investigate their acidic radicals	4		

5-Teaching and learning method

5₁-Lectures

5 2- Practical sessions

 5_{3} - some part of lecture for discussion and problems solving 5_{4} -writing a report

6- Teaching and Learning Methods of Disables: Non

7-Student Assessment

a-Student Assessment Methods

1	Experimental write up to assess a1,a3 - b1 - c1 - d1,d5
2	Two Mid-term exams to assess the progress of the students along the mid semester
3	Practical exam to assess the practical skills
4	Assignments and solving problems
5	Final exam to assess the ability of understanding, remembering and assessing.

b-Assessment Schedule

No.	Assessment	Week
1	Experimental write up	All
2	Mid-term exams	7,12
3	Practical exam	13
4	Assignments	9,11
5	Final exam	As the final exam schedule

C-Weighting of Assessments

Assessment	Weight			
Mid-term Examination	40 %			
Final Term Examination	40 %			
Assignments	5 %			
Practical Examination	10 %			
Semester work	5 %			
Other types of assessment	0 %			
Total	100 %			

8- List of text book & References

a-Course note

b-Text books

1-Athkins&Depoula,J,physical chemistry 8thedition
2-Ira Levine, physical Chemistry 5thedition
3-General Chemistry Principle and structures by James Brady &G.Humiston

Course contents-ILOs Matrix

Content	Total hours	Hours / lecture	K &U (a)	.S(b)	P.S(c)	G.S (d)
Introduction to the properties of materials	2	2	a ₁	b _{1,} b _{2,} b ₃		d _{1,} d ₂ ,c
Solutions	4	2	a _{1,} a ₂	b _{1,} b ₂		d _{1,} d ₂ ,c
Change in type and chemical balance	2	2	a _{1,} a ₃	b _{1,} b ₂		d _{1,} d ₂ ,c
Kinematics of Chemical reactions	4	2	a ₂	b _{1,} b _{2,} b ₄		d _{1,} d ₂ ,c
Electrical Chemistry	4	2	a _{1,} a _{2,} a ₃	b ₁ , b ₂ , b ₄		d _{1,} d ₂ ,c
Corrosion	2	2	a 3	b _{2,}		$d_{1,}d_{2,}d_{3}$
Introduction to chemical thermodynamics	2	2	a _{1,} a _{2,}	b ₁ ,b _{2,} b ₄		d _{1,} d ₂ ,c
Material and heat balance in combustion process	2	2	a _{1,} a ₂	b _{1,} b _{2,} b ₄		d _{1,} d ₂ ,c
Fuel technology	2	2	a _{1,} a ₂	b _{1,} b ₂		d _{1,} d ₂ ,c
Industrial chemistry: Cement- Fertilizer– plastic	2	2	a _{1,} a ₃	b _{1,} b ₂		d _{1,} d ₂ ,c
Water Pollution and Water treatment-Air pollution	-	-	-	-		d _{1,} d ₂ ,c
Determination of concentration of base using titration methods	4	2	a _{1,} a _{2,} a ₃	b _{1,} b ₂	C _{1,} C _{2,} C ₃	d _{1,} d ₂ ,c
Analyzing salts to investigate their acidic radicals	4	2	a _{1,} a _{2,} a ₃	b ₃	C _{1,} C _{2,} C ₃	d _{1,} d ₂ ,c

Learning Method / ILOs Matrix

Learning method	a 1	a ₂	a ₃	b ₁	b ₂	b ₃	b ₄	C 1	C ₂	C3	d_1	d ₂	d ₃	d4
Lecture												\checkmark		
Practical session												\checkmark		
Discussion problem												\checkmark		
solving														
Writing report						\checkmark	\checkmark	\checkmark						

Head of Prof. Dr. Tamer Samir Department :

Course Dr. Hanaa Abulmagd - Dr. Mohamed Magdy Coordinator: